Mapping Estimation for Discrete Optimal Transport
نویسندگان
چکیده
We are interested in the computation of the transport map of an Optimal Transport problem. Most of the computational approaches of Optimal Transport use the Kantorovich relaxation of the problem to learn a probabilistic coupling γ but do not address the problem of learning the underlying transport map T linked to the original Monge problem. Consequently, it lowers the potential usage of such methods in contexts where out-of-samples computations are mandatory. In this paper we propose a new way to jointly learn the coupling and an approximation of the transport map. We use a jointly convex formulation which can be efficiently optimized. Additionally, jointly learning the coupling and the transport map allows to smooth the result of the Optimal Transport and generalize it to out-of-samples examples. Empirically, we show the interest and the relevance of our method in two tasks: domain adaptation and image editing.
منابع مشابه
Mixed convection fluid flow and heat transfer and optimal distribution of discrete heat sources location in a cavity filled with nanofluid
Mixed convection fluid flow and heat transfer of water-Al2O3 nanofluid inside a lid-driven square cavity has been examined numerically in order to find the optimal distribution of discrete heat sources on the wall of a cavity. The effects of different heat source length, Richardson number and Grashof number on optimal heat source location has been investigated. Moreover, the average Nusselt num...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کامل